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Abstract 

 

In this paper, Gorter-Casimir (GC) two fluid model for low temperature normal superconductors is modified 

introducing phononic term along with electronic term in the normal phase free energy. The exponent corresponding 

to the normal phase fraction is changed from 1/2 to a general value n which can be different for different materials. n 

is a parameter which tunes how much portion of normal phase free energy will be reduced to form superconducting 

phase by condensation of normal electrons into super-electrons at some finite temperatures below superconducting 

transition temperature (TC) and the electron-phonon interaction is the controlling factor which calibrate the values of 

n. This present model describes the idea of different jump ratios of specific heat of different materials at T = TC, 

which GC model cannot predict. We have adopted a new concept of “Phase diagram” from which an idea of a new 

temperature T
∗
 has been obtained. Modified GC model explains well the resistivity behavior near TC. Moreover, for 

some high temperature superconductors along with the electronic and phononic contribution, a low temperature 

Schottky contribution is added to the free energy density. However, the contribution is negligible near TC. 
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1. Introduction  

After the discovery of superconductivity of Hg at the liquid He temperature in 1911 by H. Kamerlingh 

Onnes, many research groups have tried to develop superconducting materials. Main motivation is to 

form superconductors which have superconducting transition temperature (TC) near to room temperature. 

This is the temperature below which certain material becomes perfect conductors of electricity. Till now 

the highest achievable TC is 203 K in H2S at high pressure[1]. Many theoretical effort has been focused on 

the search for fundamental mechanism responsible for superconductivity [2-12] after the microscopic 

description of pairing mechanism by Bardeen-Cooper-Schrieffer (BCS) in 1957 [13]. The discussion of 

this microscopic pairing theory is beyond the scope of this article. Rather, we will concentrate on Gorter-

Casimir (GC) two fluid model [14] for low temperature normal superconductors (LTS). It has been a 

well-known phenomenological model in order to describe various superconducting properties. This is the 

first phenomenological model before the theory of superconductivity introduced by Ginzburg and Landau 

in 1950. Phenomenological theories are some sort of theories which express analytically the results of 

observed phenomena without paying detailed attention of their fundamental microscopic significance 

[15]. Thus to describe some properties of superconductors e.g. the behaviour of critical field (HC) 

variation with temperature, specific heat jump at TC and the temperature variation of the depth to which 

magnetic field penetrates in a superconductor, two fluid model is a good analytical approach from the 
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point of view of equilibrium thermodynamics [16, 17]. This model is very helpful for the novices to learn 

those superconducting properties quantitatively before understanding the microscopic theories. In 1934, 

Gorter and Casimir proposed the Helmholtz free energy density in superconducting phase as 

   (    )   
 

   ( )  (   )   ( )  (1) 

where x is the fraction of normal-electrons (
  

 
) and 1 − x is the fraction of superelectrons (

  

 
) in 

superconducting phase; where  ,    and    are the number of total electrons, normal-electrons and 

super-electrons respectively. Here the normal-electrons and super-electrons are usually defined by 

electrons in normal metallic phase part and superconducting phase part, respectively. In normal metallic 

phase all the electrons are normal electrons. Below TC, in the superconducting phase, it is thought that 

there is a co-existence of normal and super-electrons. Some normal electrons transforms to 

superelectrons. Here the “x” can be considered as an order parameter which characterizes the state of the 

system. x = 1 for T > TC and x = 0 for T < TC. In the model they took the form of free energy 

density   
( ) and   ( ) as the following [14, 18]. 
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where   is the condensation energy of the normal electrons into super-electrons. They had considered only the 

normal specific heat per mole of conduction electrons      . If the conduction electrons have effective masses 

 ∗ that differ from the free electron mass m, the conduction electron specific heat coefficient   is given by,  
 ∗

 
   , where         (

 

  
),    is the Fermi temperature [19]. 

After minimizing the free energy of Eq. 1 w.r.t. x, one can get the temperature dependence of x. The temperature 

dependence of equilibrium x is denoted as   (
 

  
)      [20]. Using this value the specific heat in 

superconducting phase is obtained as        (
 

  
)  [20]. So, the ratio of the specific heat jump (     ) to the 

normal phase specific heat    at T = TC (
(     )|      

  |      

) is found to be 2, while BCS theory [13] predicts that the 

value is 1.43. So, there is a little bit of discrepancy. A low temperature the GC model fails to reproduce the 

experimental specific heat data. But using the standard thermodynamic calculation the temperature dependence of 

HC can be obtained, which is good agreement with the experiment [21]. The temperature dependence of critical 

field is, 
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   [16,17]; Unit of    is A/m. Moreover the variation of London penetration depth with 

temperature can be calculated as   ( )       (
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  which is good agreement with J. G. Daunt et al. result 

[22]. Surprisingly, Gorter and Casimir have disregarded the lattice specific heat in their approach whereas on the 

other hand, according to Fröhlich [23] the electron-phonon interaction can provide attractive potential to bind 

electrons. Latter Bardeen, Cooper and Schrieffer (BCS) [13] used the idea of Fröhlich on the attractive interaction to 

give the microscopic theory of electron-pairing in superconductors. So, to modify the superconducting-state specific 
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heat (  ), it is necessary to consider the form of lattice specific heat         (according to Debye model)ffi and 

use it in the form of total specific heat (  ) of normal phase along with      . Thus, the specific heat of normal 

electrons has to be   =  +    . For most of the superconductors, the specific heat decreases monotonically to low 

temperatures. Interestingly, for some high temperature superconductors (HTS), a specific heat upturn at very low 

temperatures indicates a Schottky-type contribution in superconducting-state heat capacity. However, the Schottky 

contribution decreases rapidly with increasing temperature. The Schottky term has the form              . 

Consequently, the free energy in superconducting phase has to be modified. 

Furthermore in GC model, the supposition of the exponent of x was taken on ad-hoc basis to compare the 

experimental results. Afterwards a specific example of a two fluidmodel that is different from the GC model had 

been developed by Koppe [24], discussed by Bender and Gorter [18]. Latter Lewis used the general form of two 

fluid model to calculate the specific heat in superconducting phase, temperature dependence of critical magnetic 

field and described “Energy-Gap” model and its consequences [25]. Vendik et. al. used an enhanced two-fluid 

model based on Gorter and Casimir idea using a general exponent of normal phase fraction to describe microwave 

properties of HTS [26]. So, instead of 
 

 
, a general exponent (n) of x can be taken in order to investigate the 

contribution of the exponent in the various properties of superconductivity. The motivation of the present article is 

to modify the free energy of normal and superconducting phase part and to construct phase diagram of the 

superconducting phase transformation from normal metallic phase for some LTS and HTS. Furthermore, the present 

paper aims to calculate the specific heat in the superconducting phase and estimate the jump of specific heat at TC 

with the modified free energy. Moreover, an investigation regarding the temperature dependence of critical magnetic 

field has been performed. 

2. Mathematical formulation 

2.1 Model for low temperature normal superconductor 

Considering conduction electron specific heat and lattice specific heat, the specific heat of normal phase 

part is of the form 

           

                (3) 

where          (
 

  
)   where    is the Debye temperature [19]. So, the free energy density in the normal 

phase can be written as 
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Using Eq. 4, the general expression of Helmholtz free energy density in superconducting phase can be written as, 
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     (   ) (  )      (5) 

This is named as Modified Gorter-Casimir (MGC) two fluid model. Minimizing the free energy of Eq. 5 w.r.t x, the 

temperature dependence of x is obtained as, 
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where    . At T = TC , x=1; we derive the value of   and replacing    in equation 6 we get,



   INTER NATION AL J OURNAL O F INNOVATIVE RESEARCH IN  PHYSICS             20 

 

IJIIP VOLUME 1, ISSUE 1 

 

  [
(
 

 
    

 

  
   )

(
 

 
   

  
 

  
   

 
]

 

   

            (7) 

Using the form of x from Eq. 7 in Eq. 5, the Helmholtz free energy density in superconducting phase can 

be written as, 
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Now using Eq. 8, the specific heat in superconducting phase (  ) can be obtained by the relation    
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Subtracting Eq. 3 from Eq. 9 and dividing by Eq. 3, (
(     )|      

  |      

) can be obtained as, 
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Moreover, using standard thermodynamics, the condensation energy can be written as, 

   (  )     (  )   
  

 
  

 ( )      (11) 

   is the critical filed at which the normal phase and the superconducting phase are in thermodynamic equilibrium. 

The concept of this critical magnetic field was first found out by Meissner and Ochsenfeld in 1933. The Meissner-

Ochsenfeld effect is the observation that upon cooling the superconducting material below    the external applied 

magnetic field is expelled. Thus at     , the superconductor behaves as a perfect diamagnet.    is a limiting 

external applied magnetic field above which superconductivity is destroyed even at     . The temperature 

dependence of    can be obtained using the form of Eq. 8 and 4 in Eq. 11. 
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For GC model, n = 1/2. Accordingly, the normal electron phase fraction (x), superconducting specific heat 

(  ), specific heat jump ratio at TC (
(     )|      

  |      

) and the temperature dependence of    are respectively of 

the following form. 

  [
(
 

 
    

 

  
   )

(
 

 
   

  
 

  
   

 
]

 

 (
 

  
)

 

[
  

 

 

 

 
  

  
 

 

 

 
  

 
]

 

    (13) 



   INTER NATION AL J OURNAL O F INNOVATIVE RESEARCH IN  PHYSICS             21 

 

IJIIP VOLUME 1, ISSUE 1 

 

(     )|      

  |      

  
*  

 

 

 

 
  

 +
 

*  
 

 

 

 
  

 +*  
 

 
  

 +
      (14) 

and  

  ( )  √
 

  
[
 

 

(
 

 
    

 

  
   )

 

(
 

 
   

  
 

  
   

 )
 

 

 
(

 

 
   

  
 

  
   

 )  (
 

 
    

 

  
   )]

 

 

    (15) 

2.2 Model for high temperature superconductor 

Although for HTS the normal phase specific heat is similar to the form of Eq. 3, the superconducting 

specific heat of Eq. 9 should have low temperature Schottky correction. Thus superconducting specific 

heat is gien by 
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The Helmholtz free energy density in superconducting phase for HTS is of the form as shown in Eq. 17. 
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The specific heat jump ratio at    is of the form of Eq. 10. As the Schottky contribution decreases with 

increasing temperature, 
(     )|      

  |      

 has negligible contribution of Schottky anomaly. Furthermore, the 

temperature dependence of    can be considered similar to Eq. 12 because in presence of high external 

field the Schottky contribution becomes suppressed at low temperature which was confirmed by 

Woodfield et. al. result [27]. 

3. Results and Discussions 

For most LTS the transition temperature    is sufficiently below   , so that the electronic term in the 

specific heat is appreciable in magnitude and sometimes dominates. This is not the case for HTS [19]. 

Using   measured  values  of     and A,  Poole et al. [28]  showed  in  their  early  work  that,     
     for   

Table 1. Different parameters values of Cd, Al, Sn (white), Pb, Nb, YBCO and TBCCO [19, 29, 30] 

Material    ( )    ( )   
A 

(mJ/mole-K
4
) 

(     )|      

  |      

 

Cd 0.55 252 0.67 0.122 0.122 

Al 1.2 425 1.36 0.026 0.026 

Sn 3.72 196 1.78 0.258 0.258 

Pb 7.19 102 3.14 1.833 1.833 

Nb 9.26 277 7.66 0.092 0.092 

YBCO 92 410 4 0.035 0.035 

TBCCO 110 260 ∼ 6 0.111 0.111 
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(La0.9Sr0.1)2CuO4-δ and YBa2Cu3O7-δ .So for oxide superconductors the vibrational term dominates at   . 

Although, we want to investigate how much the phononic term contributes along with electronic term for 

some LTS like Cd, Al, Sn (white), Pb, Nb and some HTS like YBa2Cu3O7 (YBCO), Tl2Ba2CaCu2O8 

(TBCCO) etc. In Table 1,  ,   ,    , A and  

(     )|      

  |      
  of these materials are tabulated. To understand how 

the value of specific heat jump ratio at     is modified over the original GC model due to inclusion of    , 

values of A,   and    of different materials are incorporated in the Eq. 14. Calculated and experimental 
(     )|      

  |      

 values are listed in Table 2. 

Table 2. Calculated and experimental ratio of specific heat jump and normal phase specific heat at     ,  

for Cd, Al, Sn (white), Pb, Nb, YBCO and TBCCO 

Material Calculated ratio 
Experimental 

value [19] 

Cd 1.95 1.36 

Al 1.97 1.45 

Sn 1.39 1.60 

Pb 1.30 2.71 

Nb 1.52 1.93 

YBCO 1.32 3.6 

TBCCO 1.33 5.8 

 

From Table 2, it is observed that the calculated values of 
(     )|      

  |      

 are very much deviated from experimental 

values. Although, the calculated values for Sn, Pb, Nb, YBCO and TBCCO are very close to that of BCS prediction. 

This problem of deviation of calculated ratios from experimental values can be resolved by calibrating the exponent 

n of “x”. n is a parameter which tunes how much portion of normal phase free energy will be reduced to form 

superconducting phase by condensation of normal electrons into super-electrons at some finite temperatures below 

  . Considering the experimental values of 
(     )|      

  |      

 and using Eq. 10, we can get the values of n for different 

materials. In Table 3 the values of n are listed for different materials.  

Table 3. Values of n for Cd, Al, Sn (white), Pb, Nb, YBCO and TBCCO corresponding to experimental 

values of 
(     )|      

  |      

 

Material 
Experimental 

ratio 
n 

Cd 1.36 0.411 

Al 1.45 0.423 

Sn 1.60 0.535 

Pb 2.71 0.675 

Nb 1.93 0.560 

YBCO 3.6 0.732 

TBCCO 5.8 0.814 
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The possible origin of increased specific heat jump at     in Pb, Nb, YBCO and TBCCO is increasing 

phonon contribution in superconducting phase below     . Poole et.al. [28] showed that    
     for some 

HTS, e.g. (La0.9Sr0.1)2CuO4-δ and YBa2Cu3O7-δ etc. Consequently, electron-phonon interaction increases 

which gives rise to more normal electrons condensed to super-electrons near    which is reflected in the 

value of “n”. To understand this behavior the temperature variation of “x” is plotted using Eq. 7. In Fig.1,  

 

FIG 1. Phase diagram of Al, Sn, Pb, Nb, YBCO and TBCCO 

the temperature variation of    ;      ,      and         of the above materials are depicted. This can 

be named as “Phase diagram” of superconductors. At     all electrons are normal electrons. As the 

temperature is decreased normal electrons starts to form super-electrons. Below T* temperature, all 

electrons are condensed to super-electrons. For Al, T*  for GC model (   
∗ ) and MGC model (    

∗ ) are 

almost same. For Sn, Pb, Nb, YBCO and TBCCO     
∗  is greater than    

∗  and      
∗     

∗  increases more 
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in YBCO and TBCCO high temperature superconductors. This is because phonon contribution increases 

from LTS to HTS and more normal electrons are transformed to super-electrons. At    , the resistivity 

starts to fall rapidly due to start of formation of super-electrons and below certain temperature resistivity 

becomes almost zero (Resistance ∼ 10
-5

 ohm) because the condensation to super-electrons completes 

below this temperature. This later temperature can be related to the T* temperature. Here the rapid change 

in electron phase fraction below     to T* adopted in MGC model can be attributed to sharp decrease in 

resistivity. MGC model explains well the resistivity behavior near    . 

 

FIG 2. Specific heat of Al and YBCO; C is in J/mol-K. 

In Fig.2, the temperature dependence of specific heat obtained by MGC model in normal and 

superconducting phase of LTS Al and HTS YBCO are shown. There is specific heat jump at TC for both 

the systems. Interestingly, for YBCO there is a specific heat upturn at very low temperature which is the 

effect of Schottky anomaly. 

 

FIG 3. Temperature variation of HC for Al and YBCO 

Beside perfect conductivity perfect diamagnetism is the essential hallmark of superconductivity. The later 

property of any superconductor is characterized by the critical field   . In Fig.3 the temperature variation 

of HC is shown for Al and YBCO. The variation is quite well agreement with experiment [21]. Here the 

LTS Al is type I superconductor. It has only one type of    which is termed in literature as    . Here the 

magnetic state is based on Meissner phase of diamagnetism where there is no vortex state. It is not the 

case for type II superconductor where there exists an upper critical field (   ) other than    . Variation 

of    with temperature is similar to    . Here Meisnner magnetic state is obtained at low temperatures 
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with magnetic field     <    . At higher temperatures mixed state (vortex lattice) is formed in the range 

   <     <    . YBCO is an example of high temperature type II superconductor. Although here only 

the temperature variation of    is depicted. To handle the vortex state we need microscopic theory which 

is beyond the scope of this simple model. 

4. Conclusion 

In the summary, we would like to emphasize the basic results of this article more precisely. Gorter-

Casimir two fluid model is modified introducing phononic term along with electronic term in the normal 

phase free energy. The specific heat jump ratio of different materials obtained by this modified model are 

very close to the value (1.43) predicted by BCS. Although, the calculated values are very much different 

from experimental values. So, only inclusion of phononic term is not sufficient to predict experimental 

values of 
(     )|      

  |      

 . To resolve this problem a general exponent of normal phase fraction has been 

considered in the expression of Helmholtz free energy density of superconducting phase. It is observed 

that, the value of n has to be very different from 
 

 
 in order to match the jump in the theoretical value of 

the heat capacity at     with the experimental value for different materials. This result is completely new 

in the context of earlier results, obtained by Gorter and Casimir where they have considered the exponent 

as constant. n which tunes how much portion of normal electrons condensed to super-electrons, increases 

from LTS to HTS because of increased specific heat jump ratio. This is because electron-phonon 

interaction increases from LTS to HTS. This gives rise to more condensation of normal electrons to 

super-electrons near    . Moreover, from “Phase diagram” we have got an idea of a new temperature T* 

and explained the resistivity behavior near    . At     the resistivity starts to fall rapidly due to start of 

formation of super-electrons and below T*  resistivity becomes almost zero because of completion of 

condensation of normal electrons to super-electrons. The rapid change in electron phase fraction below 

TC upto T*  explained by MGC model can be related to sharp decrease in resistivity. Thus, modified GC 

model explains well the resistivity behavior near    . This model also describes the temperature variation 

of critical magnetic field quite well. Moreover, for some HTS along with the previous electronic and 

phononic contribution in specific heat a low temperature Schottky contribution is added because of 

specific upturn at very low temperatures. However, the contribution is negligible near    . Although till 

now many sophisticated microscopic development has been suggested to describe the effect of electron-

phonon interaction in superconductivity, the above modified GC model explains the phenomenological 

importance of phonon interaction to understand many properties in superconducting phase pretty well. 
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