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Abstract 

 

We solve the Euler equations in one and two dimensions using a central compact scheme coupled with an AUSM
+
 

algorithm. The compact scheme is used in the form of a cell-face interpolation scheme to create the left- and right-

states of the primitive variables required by the AUSM
+
  based solver. We invoke a TVD limiter to locally apply 

smaller stencil low-order dissipative formulae near shocks. No extra high-order artificial dissipation is added to 

stabilize the computation. A number of one and two dimensional test cases has been solved to show the 

effectiveness of this approach.  
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1. Introduction  

In a compact scheme,  derivatives of a variable in a number of neighbouring cells are coupled together in 

an implicit equation to derive a high-order accurate formula. Compact schemes  were suggested in the 

year 1972 for solving problems related to `high altitude motion of bodies'  by A. I. Tolstykh [1,2].  A 

fourth-order compact differencing scheme derived by H.-O. Kreiss was applied for a number of   

problems including the driven cavity in 1975 [3].  The cited book by Tolstykh and the paper by Lele on 

compact schemes [4] shows that compact schemes can achieve very high accuracy in the wavenumber 

space for a given formal order of accuracy. The CUD-3 - one of the earliest known compact schemes used 

for fluid dynamic applications - is one such scheme which has a  dispersion error that is very low for a 

third-order scheme [1]. This accuracy is very desirable when one computes small scale vortices. In 

compressible flow applications, one often  needs to resolve such small scale structures in the presence of 

shock waves. A wide-stencil first derivative formula or a compact scheme that extends across a shock 

wave gives rise to wiggles in the solution - a phenomenon that can be handled if  narrow-stencil and low-

order dissipative schemes are applied locally near shocks. This has been done in the widely used JST  

scheme [5], where a fourth-derivative numerical dissipation is activated in smooth regions and shocks are 

handled by a second-derivative dissipation scheme, depending on a pressure based switch. This method 

has recently been  applied to the OUCS class of upwind compact schemes [6]. This, however, would lead 

to loss of accuracy of the original OUCS2 scheme that offers sixth-derivative dissipation. Though the 

dispersion error of the original compact scheme will remain untouched, the extra dissipation at lower 

wavenumbers due to the fourth-derivative would be detrimental to the resolution of the smaller scale 

structures. A more commonly used method of attenuating high wavenumber  excitations that are beyond 
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the resolving capacity of the compact scheme is the application of low-pass filters to smooth the 

conserved variables [7]. To improve the stability of the solver, such filtering procedures often need extra 

dissipation coming from implicit operators [8]. This extra dissipation, once again, would bring down the 

original resolving capacity of the high-accuracy compact scheme. The key issue with the application of 

filters is the fact that their action is applied everywhere, irrespective of the location of shocks, causing 

robustness problems unless covered by an additional source of dissipation.  To improve the situation, this 

additional dissipation has recently been proposed in the form of `localized artificial diffusivity' [9].  In 

this method, artificial fluid transport coefficients are locally activated to capture  discontinuities. This 

method has been primarily tested for compressible turbulent flows. Its performance for strong shock-

vortex interaction cases is not well documented.  A compact differencing based solver can  robustly 

handle shocks if coupled with a WENO (weighted-essentially-non-oscillatory) class of scheme [10,11]. 

Though shock capturing improves, it has been noted that `the numerical solutions obtained with 

ENO/WENO schemes in smooth regions with moderately high field gradients are not very satisfactory' 

[12]. 

Our aim in this paper is to develop a method of solving the Euler equations for unsteady flow problems 

that will be both simple to implement and fairly accurate. Based on the above discussion, we  look for 

possibilities to extend an existing AUSM
+
 based explicit solver. One example of this kind of resolution 

enhancement is found in Ravichandran [13]. Here Murman- and Roe-type first-order numerical flux is 

`post-processed' by an upwind compact scheme to achieve third-order accuracy. No flux-limiter was used, 

and oscillatory behaviour of the solution near discontinuities was predicted. Another example is  given by 

Jun et al. [14]. The authors obtained the left and right states at the cell-faces for flux evaluation by a 

fourth-order MUSCL polynomial, followed by calculation of the derivative from the available fluxes at 

the cell-faces by a central compact scheme. We differ from this approach in the fact that we do not use the 

central compact scheme for flux-derivative calculation, rather we use it in the role of the MUSCL 

polynomials. MUSCL polynomials are dissipative in nature, whereas the compact scheme we employ is 

central - without any inbuilt dissipation. To take care of sharp gradients, we use a TVD limiter and a 

third-order MUSCL scheme which activate when the central compact scheme is not selected by the 

limiting scheme. In smoother regions, when the compact scheme becomes active, it operates without any 

inbuilt dissipation - unlike the upwind-type compact schemes [15,16]. A four-stage Runge-Kutta scheme 

is used for time-integration and no filtering is performed on the conserved variables.  A number of 

challenging test cases have been solved to prove the robustness and accuracy of the presented method. 

 

2. Euler equations and AUSM
+
 algorithm details 

 

The Euler equations for compressible fluid flow are given by  
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Here  is the  gas density, p is the pressure and u, v are the velocity components in the x- and y-

directions, respectively. Energy is given by  22
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For the other equations, the pressure term 
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The above activates for 


||
,

2

1
ji

m  .This implies a non-zero dissipation coefficient of /2 as interface 

Mach number goes to zero. A value of  = 0.1 has been used in our solver. Details of the AUSM
+
 can be 

found in Liou [17], and will not be repeated here. The form of a numerical flux function as represented by 

Equation (2) is essential for describing the application of the central compact scheme. The L and R are 

the left and right states. In the x-momentum equation, for example, L= LuL.  The left or  right state of 

the primitive variables  and u are usually calculated by a MUSCL-type scheme, as suggested by 

Liou [17]. This is where we apply the compact scheme, as described next. 

 

3. The central compact scheme and its properties  

The central compact scheme that we employ here is given by 
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It is possible to derive a sixth-order central scheme from the above. We will derive a scheme with fourth-

order accuracy, for which 
12
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a . Note that if we choose  = 1/4, a fourth-order central 

scheme results with reduced stencil size, since b = 0. Our choice for  is  = 0.373092. This result is high 

accuracy in the wavenumber space, as shown in Figure 1. To apply this to calculate the cell-face values of 

the primitive variables, we write Equation (4) as 
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Here the new coefficient c = 
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. Equation (5) can be used to calculate both the left and right states 

of u at 
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j . This would introduce zero numerical dissipation, but near shocks where low-order 

dissipation is required, the limiter does not select this scheme and low-order dissipation comes from 

alternative small-stencil formulae. This scheme will be referred to as the COMPCS1  (Compact Central 

Scheme). A single boundary closure scheme is needed, and this is given by 
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A similar formula will be required at the other end of the domain. 

4. The limiter  

For any scheme, we can write the interpolated left state at the cell-face as 
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A TVD limiter [20] can be used to limit the above as  
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In Equation (8), jj
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 LLr ,2,2min  checks whether the numerical scheme (that corresponds to the βL ) lies within Harten's 

TVD region [21]. It is possible to use Equation (8) for the compact scheme alone, or in combination with 

other schemes. We use it together with the following explicit interpolation scheme: 
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FIG 1. . Real and imaginary components of the modified wavenumber for the central compact scheme (COMPCS1) 

and the third order explicit scheme. 
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Thus if the compact scheme does not lie within the TVD region, we check whether the scheme given by 

Equation (9) does. If it does, this explicit scheme is utilized. Otherwise the limiter selects a scheme from 

the remaining three possibilities from   Lr2,2min,0max . 

5. Results and discussion 

In this section, a number of test cases in one and two dimensions will be solved using the COMPCS1 in 

combination with the limiting strategy presented above. Time stepping is performed by a four-stage 

Runge-Kutta scheme [22]. Given the governing equation in the form  utf
dt

du
, , the time stepping 

scheme can be written as:  
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. The constants A
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 and B
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 are given by A
(1) 

= 0,  A
(2) 

= -5/9,  

A
(3) 

= -1,  A
(4) 

= -33/25; B
(1)  

= 1/9,  B
(2) 

= 3/4, B
(3)

 = 2/5, B
(4) 

= 5/4.  

 

5.1 Shu-Osher problem: Mach 3 shock interacting with a density wave  

We solve the 1-D Euler equations in a domain -5 ≤ x ≤ 5. The initial condition is given by 
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This problem is chosen to show the effectiveness of the compact scheme in smoother regions. 400 

cells are taken in the domain and the Euler equations are solved with  a CFL of 0.1. Figure 2 shows the 

density at t = 1.8. The reference solution is computed on a grid of 4000 cells using a ninth-order explicit 

scheme. From the figure, it is evident that the COMPCS1 resolves the density fluctuations much better 

than the explicit third-order scheme.   

 

 
 

FIG 2. . The Shu-Osher problem of shock-density-wave interaction. Left frame: full domain, right frame: zoomed 

view of the fluctuating density at t = 1.8. CFL =0.1. Grid size: 400 cells. 

5.2 Shu-Osher problem: interacting blast waves 

For this problem, the initial conditions are given by  = 1, u = 0 everywhere in the domain between 0 ≤ x 

≤ 1. p = 1000 for x ˂ 0.1; p = 0.01 for 0.1 ≤ x ˂ 0.9; p = 100 for x ≥ 0.9.  Reflecting boundary conditions 

are applied at the ends. Figure 3 shows the results at t= 0.038. From the figure we note that the compact 

scheme results in sharper shock resolution. Only the density peak close to x = 0.8 is captured better by the  

 

 

FIG 3. . Interacting blast wave: density at t = 0.038. Run with CFL = 0.1. Left frame: full domain; right frame: 

zoomed view. Grid size: 800 cells. 
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third-order explicit scheme. This problem is not ideal for high resolution compact schemes, which are 

meant for capturing smoother regions away from the discontinuities. This problem was chosen to check 

whether the limiter is functioning in the intended manner. These two problems show that the compact 

scheme-limiter combination is working effectively. We now move on to three problems in two 

dimensions where moving shocks, vortices and slip lines are present. 

5.3 Shock diffraction at a corner 

We solve the 2-D Euler equations in a domain      1,01,0, yx . We set a reflecting boundary 

condition at the bottom wall and the lower half part of the left wall. Top and right walls have artificial 

absorbing boundary condition [23]. The initial conditions inside the whole domain are u = v = 0, p = 1 

and  = 1. At the inflow at the top half of the left wall p = 3 and the flow angle is /10. This problem has 

features of the Schardin's problem [24,25], but it is much easier to set-up. In Figure 4 we display the 

numerical  

 
FIG 4 . Shock diffraction around a corner using the COMPCS1. Numerical schlieren at t = 1 with a  t = 10

-4
. Grid 

size: 1000×1000; RK four-stage time stepping. Forty contours from 1 to 40 have been plotted 

schlieren at t = 1. At this point of time the initial shock wave that diffracts around the corner at the middle 

of the left wall has already reflected from the centreline. Diverging acoustic waves can be noticed 

attached to the small-scale  vortices as it occurs in the Schardin's problem. An important feature that has 

been captured rather well is the series of small-scale rolled-up vortices from the inflow spiralling toward 

the core of the primary vortex. The high spectral accuracy of the COMPCS1 makes it possible to capture 

these small-scale structures right at the place where they are supposed to originate. On their way to the 
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central part of the main vortex they interact with the reflected shocks and acoustic waves. Correct 

representation of this shock-vortex interaction process depends on the resolution of the initial roll-up of 

the vortices near the inflow - and this is where the low dispersion error of the scheme is useful. 

 

 

 

FIG 5. Four-shocks problem using the COMPCS1. Numerical schlieren at t = 0.8 with a CFL of 0.5. Grid size: 

1000×1000; RK four-stage time stepping. Forty contours from 1 to 40 have been plotted. 

5.4 Shock diffraction at a corner 

This problem is taken from Schulz-Rinne et al. [26]. The domain is the same as before: 

     1,01,0, yx . The initial conditions are discussed in the above reference. There are four shocks 

which divide the domain into four quadrants. The contact point in the original work is at (1/2, 1/2). We 

have shifted it to (3/4, 3/4), as in Serna (2006), for better visualization. In Figure 5 we show the numerical 

solution at t = 0.8 computed on a (1000 × 1000) grid with a CFL of 0.5. The basic structure is the same as 

has been computed by Serna [27] and Čada et al. [28], but the details of rolled-up structures indicate the 

enhanced accuracy of the present scheme. The second reference computed this case on the same grid with 

a TVD-MUSCL scheme - no small-sale roll-up was detected. 

 

5.5 The four-contacts problem 

This problem is also taken from Schulz-Rinne et al. [26]. The computational domain is a unit square. The 

nature of the solution is a clockwise turning vortex with four slip-lines spiralling around it. The result is 

shown in Figure 6, at t = 0.8. Comparing with  Čada et al. [28], we note that the contacts are very well 
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resolved by COMPCS1 due to its high spectral accuracy. For this problem, schemes without adequate 

resolution fail to show any roll-up structure for the slip lines extending to the top right and bottom left 

quadrants. For the other two slip lines, a couple of small-scale vortices were displayed in Čada et al. [28]. 

The present solution, on the other hand, capture the small-scale vortices very well on all four slip lines. 

 

 

FIG 6. The four-contacts problem using the COMPCS1.  Numerical schlieren at t = 0.8 with a CFL of 0.5. Grid 

size: 1000×1000; RK four-stage time stepping. Forty contours from 1 to 40 have been plotted. 

6. Conclusion 

We have presented a method of using a central compact scheme in a conservative manner in an Euler 

solver based on the AUSM
+
 algorithm. No filtering, high order dissipation or any localized artificial 

diffusivity have been used. A TVD limiter invokes lower order dissipative formulae to stabilize the 

solution near discontinuities. In the smooth regions of the flow field the solver runs without any high-

order dissipation. The key advantage of the present formulation is its low overall dissipation - which 

originates only from low-order formulae activated by the limiter at sharp gradients. The presented test 

cases confirm the adequacy of the limiter in handling shocks, and the high spectral accuracy and low 

dissipation of the overall scheme has been confirmed through small-scale roll-up structures in three two-

dimensional standard configurations.  
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