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Abstract 
 
In this manuscript different important outcomes of the BCS theory have been revisited in a nutshell focusing 
on every mathematical details to explain superconducting properties. 
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1. Introduction 
 
Superconductivity is one of the most fascinating subjects of modern physics. After the discovery of the 
phenomena of Superconductivity in 1911 by  H. Kamerlingh Onnes. it has gained tremendous research 
interest for last few decades. He received the Nobel Prize in Physics in 1993, for this discovery, i.e., that at 
very low temperatures, certain metals become perfect conductors of electricity. In 1933, Meissner and 
Oschenfeld discovered that a superconductor has diamagnetic properties, i.e., that the magnetic field inside 
the bulk superconductor becomes zero. This effect characterizes a superconductor and distinguishes it from a 
perfect conductor. Till then, many theories behind the superconductivity phenomena have been developed. 
The first theory to explain the occurrence of superconductivity in metallic superconductors was given by 
London et. al. in 1935 [2]. They formulated relation between current density and electromagnetic vector 
potential and using that explained the zero electric resistivity and Messiner effect subsequently. In addition 
to these, two contemporary physicists Cornelius Gorter and Hendrik Casimir provided first 
phenomenological two fluid model in 1934 and explained superconducting properties [3]. iI 1950, Vitaly 
Ginzburg and Lev Landau proposed Ginzburg - Landau (GL) theory introducing a complex wave function 
( ) as an order parameter ( ) and this was one of the most successful phenomenological 
theories [4]. Interestingly, the eminence of GL theory was realized later on around 1959 by Gorkov and that 
is GL theory is analogus to the famous Bardeen, Cooper and Schrieffer (BCS) theory of 1957 [1] around the 
superconducting critical temperature (TC), where GL order parameter  is related to BCS energy gap 
parameter simply by a proportionality constant. Thus we reached the golden year of superconductivity when 
the complete theory microscopic theory of conventional superconductor was discovered by Bardeen, Cooper 
and Schrieffer which is till now one of the most succesful microscopic theories to explain conventional 
superconductivity. For the pioneering theory they were awared Nobel prize in 1972. Their theory was based 
on the famous “Cooper’s one pair problem” [5] which states that, in a system of many electrons at low 
enough temperatures, a very weak attractive force, can bind two electrons together, forming the so called 
Cooper pair. The effective force between electrons can be attractive in a solid instead of becoming repulsive. 
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This arises due to the coupling between electrons and the phonons of the underlying crystal and this concept 
was suggested by Fröhlich in 1950 [6]. However, for some exotic and high temperature superconductors the 
BCS theory fails to explain the superconducting properties. And the underlying microscopic theory is matter 
of great interest of many researchers till date.  

Thus to understand the pairing mechanism and different superconducting properties, BCS theory is the ideal 
platform to start with. Although this is now a welknown undergraduate topic in many unversitities during the 
discussion of superconductivity, the detailed mathematical desriptions starting from construction of the 
many particle wavefunction in which every electron is paired, should be a matter of interest and this will be 
very helpful for the novices. Although the detailed analysis has been discussed in many books [7-12], the 
different important outcomes of the BCS theory have been revisited in this manuscript in a nutshell focusing 
on every mathematical details due to its analytical complicacy. The BCS theory gives the following ideas 
which will be discussed in this manuscript. 

I. Construction of many electron wavefunction.  

II. Construction of Energy Gap equation and Energy Gap Parameter. They predicted an energy gap , 
where  is the energy for breaking up a pair into two free electrons. 

III. Temperature dependence of   . 
IV. Estimation of Critical temperature (T

c
). 

V. Isotope effect:  , where the transition temperature varies with the mass of the crystal 

lattice ions, M. They predicted . Most common superconductors (Pb , Hg etc.) agree very well 

with this prediction. 
VI. Evaluation of critical field HC . 

VII. Evaluation of Specific Heat. 
 

2. Mathematical Formulations and Discussions 
 

2.1 Construction of BCS wave-function: 

We might examine a form like 

………………………….(1) 

where it is defined that the two-particle pair wavefunction 

                                                   ……………(2)   

To insure (1) satisfies the Pauli principle we must operate on it with the antisymmetrization operator, Â 

  Â ………………………….(3) 

Assuming translational invariance, it can be written as:   and after Fourier expansion: 

                                                     …………………………(4) 

On substituting (4) into (3) we obtain the most general N-electron wave-function expressed in terms of 
momentum eigen functions: 
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Â  

According to Pauli exclusion principle, as the space part of the wave function is symmetric, spin part has to 
be antisymmetric. That is why pairing of spin up and spin down electrons (singlet pairing) has to be 

considered. The function  has a simple 

interpretation. It describes a state one electron occupies the state , another the , a third , and so 
on. This is what usually called Slater determinant formed with states  

( )( )( )( )…..( )( ). Rather than writing in coordinate representation, it is 

usually easier to perform calculations in the occupation number (Wigner-Jordan) representation, i.e. , to use 
the language of second quantization. 

Instead of writing Â , we write  |0>, where |0> is the vacuum state and is 

the Fermi creation operator for an electron 1 having momentum  and spin or .  

The commutation relation for these operators: 

                                                         ………………………(5a) 

                                                         ……………………….(5b) 

 and 

                                                         ……………………….(5c) 

  where  and  denote wave vectors and  and  spin projections. 

In the second quantized notation the many-body pair wavefunction can then be written  

                      | ……………(6)       

It is quite difficult to perform calculations with (6) and Bardeen, Cooper and Schrieffer proposed an 
alternative wavefunction  

                                                ………………………………(7)   

  BCS introduced pairing operators defined as: 

                                                             ……………………………………………… (8a)  

                                                            ……………………………………………….(8b) 

According to Schrieffer these operators are called “pairon operators”. The Cooper pair has total spin s=0. 
Therefore, according to the Pauli principle, the wave functions describing the cooper pair system have the 
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boson permutation symmetry, i.e., they are symmetric under permutations of pairs. But the cooper pair 
operators do not obey the boson commutation relations. 

                                   for ……………………(9a) 

                                                    for …………………….(9b)   

where  is the electron number operator.  and  are the number operators for spin-up and 

spin-down electrons, respectively. In dilute fermionic density limit, then cooper pairs behave 

like bosons.  

From equ.(7) we can write  

Let us first normalize . 

                           

                                                  

[Now we know that for fermionic operator 

                                                         

   And                                               &  

So,                  

And                                                ] 

The term with an odd number operators vanish; using condition (9b) in the last term gives 

   

                                             

So, the normalized ground state BCS wave function is 

                                               ..............................(10) 

Now we can introduce the quantities 

                                                ……………………………………………….(11a) 
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And                                       ………………………………………………….(11b) 

Using (11a),(11b) from (10) we get 

                                    ………………………………...(12) 

So,   and  &  satisfy  The implication of this form is  that the probability of 

the pair  being occupied is , and the probability that it is unoccupied is    

The wavefunction (6) for the special case 

                                              

                                              

describes the Fermi sphere; all states with are filled and those with  are empty. The 

corresponding form for equ.(12) is  

                                    

                                      

The difference between equ.(6) and equ.(12) for the general case is that the first defines a state with 
precisely N/2 pairs (N electrons) while the second is a superposition of pair states containing 
2,4,6,….N,….. ∞  electrons, i.e., it does not describe a state with a fixed number of particles. By 
superposition we may relate the two wavefunctions as 

                                    λ …………………………………………(13) 

 with the normalization condition λ  The average number of particles, , associated with BCS 
wavefunction is 

                                     ………………………………(14)   

 where     is the total number operator.    

So,                                  

                                                 

Since the electrons all occur in pairs with antiparallel spin. Putting form of |  from equ.(12) we get 
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2

 

[In the last part of the expression the middle two terms give zero, since they change the occupancy of the l th 

pair. The operators in the last term can be transformed to , both factors of which 

give unity when operating on ] 

2

 

Using the condition  we get 

 

In the upper expression only last part contributes. 

                                                        …………………………………….(15)  

The mean square fluctuation of the number of particles is defined as  

 

Similar to the above calculation, we can get: 

 

In a similar manner, we get 

                                                        …………………………….(16) 

So,                                                             

For a metal  and therefore  is of the order of . This says that the coefficients in the 
expansion (13) will be highly peaked around . 

Important conclusion is that calculations performed using (6) or (12) should differ by amounts of 
order . Since it is far easier to calculate using (12), this form was adopted by BCS.   
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2.2 Calculation of Gap-equation: 

The appropriate ground state energy is obtained by equ.(12) as a trial wave function and evaluating the 
expectation value of the Hamiltonian of the system of electrons; this is followed by minimization of the 
resultant energy with respect to the free parameter, , subject to the condition that the average number of 

particles is   

We can write the Hamiltonian of the system of electrons as: 

ħ
 ′ ′′ ′ ′ ′ ′ ′  

Where the second term accounts for all electron-electron interactions and momentum conservation ( and 
transfer by an amount ) has been built into the scattering potential, . Since the BCS wavefunction does 
not fix the number of electrons we must introduce a constraint that the average number of particles is i.e., 

 . This constraint is introduced through a Lagrange multiplier , which is 

actually chemical potential. Incorporating these considerations we write the Hamiltonian as 

′  ′ ′′ ′ ′ ′ ′ ′  

′  

Where 
ħ

. 

We now restrict ourselves to that part of the interaction Hamiltonian which contributes to superconductivity; 
i.e., we retain only the attractive part leading to the formation of pairs with opposite momenta and opposite 

spins. Replacing  by  and ′  by , and ′ by , the ‘reduced’ Hamiltonian becomes: 

′   

  

 

The ground state energy is: 

……………………….(17) 

 

We have calculated              =   

So,                                              ..............(18a)  



ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online)  IJIIP, Vol. 1,  Issue 4, 2020  

22 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS 

Now, 

 

Only contributing term is .                                       

So,                                    ……………(18b) 

…………(19) 

Now to evaluate the ground-state energy using the BCS variational wavefunction we must minimize the (17) 
subject to the condition  This constraint is conventionally imposed by letting  

                                             

Thus   

And minimizing with respect to the parameter  yields  

 

……………………..(20) 

We define the function 

………………………..(21) 

which is called “Gap function” and equ. (20) becomes  

 

Or,                                                …………(22) 

Where  

      ……………(23) 

Solving equ. (23) and the relation we get, 

………………..(24a) 
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………………(24b) 

These two are called “Bogolibov co-efficients”. 

Actually  is the excitation energy of a quasi-particle of momentum , while  is independent of  and 

is the minimum excitation energy, or energy gap. 

We can now substitute equ. (22) into equ. (21) to evaluate , leading to the condition for self-consistency 

    ………………….(25) 

Equ. (25) has the trivial solution and using equ. (24a) and equ. (24b) we have  

    for  

 

And 

     for  

Hence the BCS wavefunction is then 

…………………..(26) 

It is the usual ground-state wavefunction of a filled Fermi sea. 

The simplest example of non-trivial solution to eq. (25) is using the Cooper model potential, 

 

The function will then have the form  

 

So, the equ. (25) becomes 

…………………………..(27) 

Upon replacing the summation by an integration from to , and using the symmetry of  values, 
this becomes 

………………….(28) 
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………….(29) 

Where  is the density of states per unit volume at the Fermi energy. The fluctuation of density of states 
within the range around Fermi surface is small. So, we can take the density of states per unit volume as 
constant at the Fermi energy.  

In the weak coupling limit,  for which 

 ………..(30). 

Let us estimate : Taking  as corresponding to the Debye temperature  100 K and , we 
obtain  K.      

2.3 Evaluation of Ground-State energy: 

From eq. (19), using eq. (25), eq. (22), eqs. (24a) and (24b), we have in the superconducting state, 

 

                                 …………………….(31) 

[Using eq. (25) twice to evaluate the second (interaction) term in eq. (31) we obtain  ] 

In the normal state there is no gap, i.e. ,  and in this case  Thus 

……(32) 

the terms for , gives zero, since   

 The ground-state energy of the superconductor is measured from the ground-state energy of the normal 
state. The difference in these energies is  

 

 

by symmetry about the Fermi energy. 

Going over to the continuum approximation, we have to carry out the integration on  from 0 to   
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Where  is the density of states per unit volume at the Fermi surface. 

 

In the weak coupling limit, using the eq. (28) we get 

……….(33) 

Introducing the thermodynamic symbol for the internal energy of the system, and anticipating that 
 is temperature dependent, we have  

……..(34) 

This is the “condensation energy” at T= 0 K. The difference in energy between the superconducting and 
normal state is negative, that is the superconducting state is more favorable energetically. From 

thermodynamic calculation, the condensation energy is equal to  Where  is the thermodynamic 

critical field. 

So,                                                       . 

…...........(35) 

Thus we have expressed the thermodynamic critical field in terms of characteristic parameters of the 
superconductor, i.e., the energy gap. 

Let us check whether eq. (35) gives reasonable orders of magnitude for relevant physical quantities.1 cm3 of 
metal contains 1022 electrons and the width of the electron band is 10 eV. Then the density of states per 

unit volume is erg-1cm-3. According to the previous estimation  erg. This leads 
to  Oe, which is reasonable value of thermodynamic critical field.       

2.4 How the energy gap comes? 

Let us focus on an arbitrary pair of states ( ) in a superconductor, in momentum space. First we find 
contribution of this pair, , to the total energy of the superconductor. That is, 

. 
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      …………………..(36) 

Suppose that the pair state ( ) in the ground state of a superconductor is empty. How will the energy of 

the system change if we add one more electron to it from outside and place it in the state ? Since we then 

have a single electron in the state  the pair state ( ) is not allowed to take part in the scattering events, 
i.e., it cannot contribute to the ground-state energy of the superconductor. Hence the energy of the 

superconductor with one ‘’extra’’ electron in the state  will be  

…………(37) 

We refer to this “extra” uncoupled electron as an elementary excitation of our system, or quasiparticle.  is 
the ground-state energy of the superconductor and  accounts for the kinetic energy of the “extra” electron. 

 

We know that,  

So, by adding one extra electron to a superconductor in the ground state, we increase the energy of the 

system by at least the value of  (the minimum increase corresponds to  i.e., to the state  being 

on the Fermi surface). 

                                           

FIG 1: Schematic representation of energy gap in superconducting phase 

This means that the spectrum of elementary excitations of the superconductor is separated from the ground-
state energy level by an energy gap. 

Suppose that, as a result of an external effect, one of the electrons from the pair ( ) is moved to a 
neighboring state in momentum space. Initially all states were either occupied in pairs or empty in pairs. 

Then the transfer of one electron from the pair ( ) to the neighboring state implies that two uncoupled 

(excited) electrons have appeared. One of them stays in one of the states ( ) while the other turns up in 

the neighboring  state. 
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But from the diagram, it is found that in order to break a pair, one needs at least the energy 2 . All pair 
states belong to the condensate occupying the ground-state energy level. A single extra electron is not 
allowed to be at this level and must therefore occupy the first empty level available in the elementary 
excitation spectrum. If a pair is broken, both electrons must go up to the elementary excitation levels which 
requires an energy larger than  

2.5  Wavefunctions associated with excitations: 

We next examine the wavefunctions associated with various excitations. We may write the wavefunction of 

a particle (electron)-like state with spin  and wave vector  as 

 

 

    ……………………………………………(38) 

Where ……………………………(39) 

We may write a hole state with spin  and wave-vector  

 

       ……………………………………..(40) 

Note that, the same state has been generated by either adding an electron to  or removing it from  
Similarly we have 

………………………..(41) 

And  

…………………….……(42) 

If we multiply eq. (38) by and eq. (40) by  and add we obtain 

…………..(43) 

Or, 

………………………..(44) 

Where …………………………………………..(45) 
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Multiplying eq. (41) by  and eq. (42) by  , adding and applying normalization condition yields 

…………………………….(46) 

Similarly using equ. (39) and (41), yields  

 

Or, 

…………………………(47) 

Where  ……………………………………………(48) 

Using (41) and (42) we obtain  

…………………………..(49) 

The two pairs of operators  play the role of quasiparticle destruction and creation 

operators. Since the ground state contains no quasiparticle excitations, we must have  on the 

other hand  an excited state with one quasiparticle. The operators  are called 
Bogoliubov-Valitin operators. They follow the Fermi anticommution rules: 

…………………………………..(50a) 

…………………………………..(50b) 

And  

………………………(50c) 

And using eq. (45) and (48) we get 

………………………….(51a) 

…………………………….(51b) 

2.6 Temperature Dependence of the Energy Gap:      

As the temperature increases, the energy gap  decreases (where  will be kept for T=0 K). As we 
already know, in order to break a Cooper pair and create two elementary excitations, the energy gap 2  is 
needed. If the temperature T is such that  it is evident that many Cooper pairs will be broken 
through thermal processes. Accordingly, a large number of states in momentum space will be filled by 
elementary excitations (single electrons).  
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The elementary excitations obey the Fermi-Dirac statistics, the probability that the state  is occupied by a 
single electron is 

…………………….(52) 

Where  is the energy of an elementary excitation. So,  at  and  at  If 

at least one of the states, ( ) or ( ), is occupied, the pair state ( ) cannot take part in creating the 

superconducting state. The probability of this is 2  Therefore, the probability that the pair state ( ) can 

participate in the scattering processes, i.e., they can take part in creating the superconducting state, is 
 

Let us suppose that we are dealing with the state , in which the average number of quassi-particles in the 

 th state is given by eq. (52). And 

…………………………..(53a) 

And  

……………………(53b) 

Inserting equation (51a) and (51b) into the reduced Hamiltonian  

   yields 

 

(terms with unequal numbers of  and ). 

And  

 

(terms with unequal numbers of  and ). 

Using eqs. (53a) and (53b) the expectation value of the reduced Hamiltonian is  

 

…………(54) 
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In this case the “Gap equation” becomes, 

………………………………..(55) 

This expression gives the temperature dependence of the energy gap. As  the gap is  With 
the help of eq. (22) 

  

Where by analogy to the case of zero temperature. 

  

Replacing summation with the integration yields, after simple algebra, 

…………………(56)  

By manipulating,  

…(57) 

[ It can be written that,   , where  [ n is the set of all 

positive and negative integers] and it can be used to evaluate  and 

]  

Where the second term is convergent and we may extend the limits of the integral to  with no significant 
loss in accuracy.  

The 1st term in the square brackets has poles at  with residues of   

.  
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The corresponding poles of the second term are at with residues of . Using the property 

, which we shall calculate in the next topic. 

Completing the contour in either half plane, we may write eq. (57) 

 

Expanding the denominator of the 1st term in the second square bracket to order  yields 

 

[Now,  has been set equal to  ] 

 

When temperature is near  We can write . Then taking upto 1st order of  in   
 and , we get 

 

………..(58) 

So,        ……….(59) 

                                          

FIG 2: Temperature variation of energy gap predicted by BCS. 

2.7 Estimation of critical temperature: 

At , the gap is  Hence, replacing T in eq. (56) with Tc and setting  yields an equation with 
respect to Tc: 
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……………….(60) 

      where the cutoff,  

  

The upper limit is very large and can be approximated as, 

 

 

                                                                                  

……(61) 

On the other hand, we already know (from eq. (30)) 

 

Then 

    ……………………..(62) 

 

2.8 Isotope effect 

Let say,  energy is equal to Debye energy  because the origin of attractive interaction is electron-
phonon interaction and phonon comes due to vibration of lattices. Then from eq. (58) 

 

Recalling that the Debye frequency varies as: 

 

Where M is the mass of the isotope. 

So,                                                                  

The critical temperatures are different for different isotopes of the same superconducting element and 
following rule is satisfied. 
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constant. 

This is effect is called isotope effect. 

2.9 Calculation of the free energy: 

The entropy for Fermions is given by the usual expression from statistical mechanics: 

 

 

Putting the form of  

………………..(63) 

The Helmholtz free energy in the pairing approximation is given by  

 

The contribution of to the energy can be obtained from eq. (54) and (55).   

 

                  …………………(64) 

And 

……………………………(65) 

So, 

…………………….(66)   

Using eq. (64) and (66) we obtain 

………………………(67) 

Using eq. (63) and (67) we get 
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…………………(68) 

This is the expression for free energy in the superconducting state. 

In the normal state the expression for free energy can be obtained by setting  and  

…………………(69) 

 

(Around Tc) 

2.10 Temperature dependence of Critical magnetic field 

We know that,  

                     (Near Tc) 

Actually,  . Behavior of  is almost same as  with temperature.  

 

FIG 3: Variation of  &  with temperature 

2.11 Calculation of Specific heat 

To calculate we have to use the expression for S:  
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………….(70) 

Because  vanishes in the normal state, we write difference between the heat capacity in the 

superconducting and normal states at  as, 

 

 

In the vicinity of , the gap is well approximated by  Then the discontinuity in the 

heat capacity is,  

...................(71) 

At very low temperature ( ), ,  and  and the heat capacity approaches 

the limiting form 
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which decays exponentially. 

In the normal state  So,  and eq. (70) becomes 

 

After carrying out the integration we get, 

 

So, we get the following behavior of the variation of specific heat with temperature, 

 

FIG 4: Temperature variation of heat Specific predicted by BCS. 

3. Conclusion: 

Thus, we can conclude that the BCS theory is a extraordinary powerful microscopic theory to understand the 
above various properties of superconductors. The original BCS theory predicts that the isotope exponent 

 Most common superconductors (Zn, Pb, Hg etc.) agree very well with this prediction. But there are 

exceptions of this prediction. Reduced effect is observed in Molybdenum and Osmium (Mo, Os) and zero 
isotope effect is observed in Ruthenium (Ru). In other systems such as the high temperature superconductor, 
YBa2Cu3O7, the absence of isotope effect may indicate that the lattice phonons are not really involved in the 
pairing mechanism. In these materials applicability of BCS theory is limited, more sophisticated schemes 
need to be developed. 

REFERENCES 

  
[1] J. Bardeen, L. N. Cooper and J. R. Schrieffer  Phys. Rev. 108 1175 (1957). 
 
[2] F. London and H. London, Proc. Roy. Soc. A 149, 71 (1935). 



ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online)  IJIIP, Vol. 1,  Issue 4, 2020  

37 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS 

 
[3] C. S. Gorter and H. Casimir, Zeitschrift für Technische Physik 15 (1934) 539. 
 
[4] V. L. Ginzburg and L. D. Landau, Zh. Eksperim i Teor. Fiz. 20, 1064 (1950). 
 
[5] L. N. Cooper  Phys. Rev. 104 1189 (1956). 
 
[6] H. Fröhlich, Proc.Phys.Soc. 63,778 (1950). 
 
[7] M. Tinkham, Introduction to Superconductivity, McGraw-Hill, Inc. 
 
[8] J. R. Schrieffer, Theory of Superconductivity, Perseus Books Publishing Massachusetts. 
 
[9] P. G. De Gennes, Superconductivity of Metals and Alloys, Westview press Advance Book Program. 
 
[10] J. F. Annett; Superconductivity, Superfluids and Condensates, Oxford Master Series In Condensed Matter Physics. 
 
[11] J. B. Ketterson and S. N. Song, Superconductivity, Cambridge University Press. 
 
[12] T. Tsuneto, translated by Mikio Nakahara, Superconductivity and Superfludity, Cambridge University Press. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


