
ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online) IJIIP, Vol. 3, Issue 3, 2022

1 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS

Development of a Universal Running Time Predictor using

Multivariate Regression
Farhan Hai Khan1, Tannistha Pal 2*, and Rounik Roy 3

1Department of Electrical Engineering, Institute of Engineering & Management, Kolkata-700091
2 Department of Electronics and Communication Engineering, Institute of Engineering & Management,
Kolkata-700091
3Department of Electrical Engineering, Institute of Engineering & Management, Kolkata-700091

Email: paltannitha@gmail.com

Abstract

Various types of running times exist for analysis of algorithmic efficiency. This research presents a more
empirical approach to the problem for the practical measurements of the actual running time of algorithms
by considering a plethora of randomized inputs Rn and then fitting a regression curve in n to the algorithm
of practical time complexity υ (n). This will also provide us the productivity factor η which will quantify
the universal running time with respect to the asymptotic worst-case complexity and evaluate the
efficiency of the given algorithm with the help of leading coefficients. This research will also help us
compare similar algorithms in a mathematically modelled manner.

Keywords: universal running time; efficiency of algorithms; practical time complexity; multivariate regression;
leading coefficients

1. Practical Running Time: A Brief Introduction
1.1 Statement

For any algorithm, M, the time it takes to execute a predefined task over a fixed input size n where n
belongs to a discrete interval {n∈ [a, b]} and is fed with discrete random inputs Rk {where k=a, a+1,
a+2,b} when fitted on a regression line will give the practical running time υ (n) for that particular
interval.

mailto:paltannitha@gmail.com

ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online) IJIIP, Vol. 3, Issue 3, 2022

2 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS

1.2 Generalization

When the given interval is [1, ∞), the practical running time is the actual or the 'universal' running time of
that algorithm M across all inputs.

1.3 Caution

Since infinity is a non-reachable entity, we substitute the upper limit in the interval with a suitably high
value. This value may vary suitably for various algorithms[1], but the key concept for this calculation is
that the current CPU processor speed standards are limited to t≅108 elementary operations /sec
approximately.

1.4 Feasibility

The relation for the operations to be feasible for a computer is if,
t (a) +t (a+1) +t (a+2) +…………+t (b) ≤tmax
where tmax=m*108 operations/sec (CPU Speed) and t (n) is the worst-case asymptotic time complexity for
the given algorithm [2]. However, for simplicity purposes, we will only consider the equality case.
Here, m is the time in seconds provided by the user for running the testing algorithm several times.

1.5 Simplification

If we consider the interval [1, b] then the modified relation becomes

t (1) +t (2) +t (3) +…………+t (b) = tmax

�=1
� t(n)� ≅ 1

� � � ��� =tmax (1)
The above sum is approximated to an integral using the Riemann Sum [3].

1.6 Calculations for the limits of the intervals (a&b):

1.6.1 For QuickSort[4]:
�=1
� t(n)� = tmax

t (n) =�(�+1)
2

So, in case of QuickSort, taking m=1s, tmax=108

�=1

� �(�+1)
2

� =108

ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online) IJIIP, Vol. 3, Issue 3, 2022

3 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS

�=1

� n2
2

� +
�=1

� �
2

� =108

�(�+1)(2�+1)
12

+ �(�+1)
4

= 108 [∵ �2� =�(�+1)(2�+1)
6

& �� =�(�+1)
2

Simplifying we get,
�3

6
+ �2

2
+ �

3
= 108

By solving this cubic equation, we get,
b=842.432≅103

Hence, we chose the interval [1,103] for QuickSort.

1.6.2 For Merge Sort[5]:

�=1
� t(n)� ≅ 1

� � � ��� = tmax

t (n) = 7nlog2n + n

1
� (� 7nlog2n + n) dn = tmax

1
� (� 7nln �

ln 2
+ n) dn = tmax [∵log2n=ln�ln 2

]

Now,

����� = ��� ���� - [� �(���)
��

����]��= �2

2
��� - 1

�
� × �2

2
��= �2

2
��� - �

2
� �� = �2

2
��� - �2

4

Using the above result [������� = �2

2
��� -�

2

4
] in the MergeSort equation we get,

7
��2

[�
2

2
��� - �

2

4
]1b + [

�2

2
]1b = tmax

14�2���
4��2

- 7�2

4��2
+ 7

4��2
+ �2

2
- 1
2
= tmax

5.049433�2���- 2.024716�2+ 2.024716b = tmax

Taking m=2 min. =120s, tmax=120x108,

To solve this equation in b, we used the Newton Raphson Numerical Method. [3]Solving, we get,

ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online) IJIIP, Vol. 3, Issue 3, 2022

4 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS

b=16003.153≅104

Hence, we chose the interval [1,104] for MergeSort.

2. Productivity Factor: A Measurable Entity

Let α(g) denotes the coefficient of the highest order(growth) term also known as the leading coefficient
found in the function g(n). We are interested to find the α (g) when g =

I) the asymptotic worst-case complexity, i.e., leading coefficient of t(n) where t(n) is the worst-case
running time. Mathematically, c0=α (t (n)).

II) the practical running time complexity, i.e., leading coefficient of υ(n). Mathematically cp=α (υ (n)).

The productivity factor (η) is defined as the ratio of the practical coefficient by worst case coefficient.

In layman terms, it quantifies how good/bad is the measure of the running time of an algorithm’s worst
case asymptotic complexity.

Mathematically,

η= cp/c0 =α (υ (n))/ α (t (n)).

2.1 Generalizing

If η<=0.5, the worst-case asymptotic complexity is a bad approximation of the algorithm’s practical
running time and the worst case occurs rarely.

If η>0.5, the worst-case asymptotic complexity is a good approximation of the algorithm’s practical

running time and the worst case occurs more frequently.

3. Implementation: Application of the Practical Running Time Complexity on Sample Standard
Examples

3.1 Multivariate Regression: Effective Modifications

The standard equation for Multivariate Linear Regression[6] (Uyanıka 2013) is:

ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online) IJIIP, Vol. 3, Issue 3, 2022

5 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS

υ (n) = θ0+θ1x1+θ2x2+θ3x3.... +θmxm (2)

where m = number of features

xi= feature values [i= 0,1, 2...m]

θi=coefficient of features (to be determined) [i= 0,1, 2...m]

υ (n)= Practical Running Time Complexity (Hypothesis Function)[7] (Stewart 2006)

since we want to fit a curve in n to υ(n) hence we will assume that υ(n) is a predefined function of n and
will attempt to find out all the θi [i= 0,1, 2...m]. Hence we would replace the xi with suitable values such
as x1=n, x2=logn, x3=n2, x4=nlogn, x5=√n...etc. A sample equation[8] would be:

υ (n) = θ0+θ1n+θ2logn+θ3n2+θ4nlogn+θ5√n..... +θmxm

Note that this implementation is completely problem dependent and may vary from algorithm to
algorithm. We then use any optimization technique for minimizing the cost function for regression fits.

3.2 QuickSort

Quicksort[9] is a Divide and Conquer algorithm; it picks an element as pivot and partitions the given array
around the picked pivot. There are many different versions of QuickSort that pick pivot in different ways.
We considered choosing the last element of the partitioned list as our fixed pivot.

The recurrence relation for Worst Case of QuickSort[4] (Qin QuickSort 2008) is:

t (n) =n+t(n-1)

t (n) =n+(n-1) +(n-2) +.... 3+2+1=∑ n = �(�+1)
2

= �2

2
+�
2

Hence, t (n) =O (n2) and c0= α (t (n)) =0.5

The acquired relation [3] by our model is striking as it completely ignores the O (n2) term:

υ (n)= - 464.3136289+27.3296038n+0.0048230n2

We will draw attention to the coefficient of the highest order, the leading coefficient of this practical
running time, cp=α (υ (n)) =0.0048230. This is a very low value and will be discussed more in a later
section.

Therefore, the Productivity Factor,

η=cp/c0=0.0048230/0.5=0.009646 ≅ 10-2

So, the worst-case estimation is a disastrously bad estimation!

ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online) IJIIP, Vol. 3, Issue 3, 2022

6 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS

3.3 MergeSort

MergeSort[10] is a divide-and-conquer algorithm based on the idea of breaking down a list into several
sub-lists until each sublist consists of a single element and merging those sublists in a manner that results
into a sorted list.

The recurrence relation[5] (Qin MergeSort 2008) is therefore,

t (n) =2*t (n/2) [Divide step] +7n [Merge Step]

On solving this recurrence [3] with t (1) =1, we get,

t (n) =7 n*log2n+n

The recurrence relation obtained by regression is,

υ (n) =2421.28748+0.66023n+4.57608nlog2n

Productivity Factor η=cp/c0 =α (υ (n))/ α (t (n)) = 4.57608/7= 0.652944 ≅ 0.65

Hence, the worst-case approximation is a rather good estimation in MergeSort.

3.4 Comparison of Algorithms

We can compare the efficiency of two or more similar algorithms on the basis of their practical running
times and leading coefficients.

For e.g., let us consider the two algorithms discussed earlier, viz., MergeSort (M) and QuickSort (Q).

The corresponding relations are:

υ'Q(n) =464.3136289+27.3296038n+0.0048230n2

υM (n) =2421.24620+0.66024n+4.57608nlog2n

Our Research tells us that QuickSort almost never reaches the worst case of O (n2). Not surprisingly, we
tried to fit a linearithmic (nlogn) fitting to the QuickSort data and the values obtained were truly
remarkable:

υQ(n) =0.59037+5.22448n+2.63849nlog2n

This clearly displays that the QuickSort algorithm, in practice, is actually O (nlogn).

ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online) IJIIP, Vol. 3, Issue 3, 2022

7 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS

But both QuickSort and MergeSort are then having practical running time υ (nlogn). This induces a
conflict! How do we know which algorithm is better?We compare them using the leading coefficients.

As α (υQ (n)) = 2.63849 and α (υM (n)) = 4.57608

Clearly, α (υQ (n)) <α (υM (n)) and hence, QuickSort is a better practical algorithm than MergeSort
although the former has asymptotic worst case complexity O(n2) and the latter O(nlogn)!

This is actually seen in practical reality, as python, spreadsheets, etc., use QuickSort as an inbuilt sorting
function.

4. Data Visualization: Plotting the Running Time υ (n) vs. Features & Regression Line

4.1 2-Dimensional Data Plots (x, y) ≡ (n, υ (n))

FIG 1. QuickSort Algorithm (O (n2)), υ(n) vs. n. FIG 2. MergeSort Algorithm υ(n) vs. n.

ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online) IJIIP, Vol. 3, Issue 3, 2022

8 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS

4.2 3-Dimensional Data Plots (x, y, z) ≡ (n1, n2, υ (n))

FIG 1. MergeSort Algorithm (n,nlogn,υ(n)). FIG 2. QuickSort Algorithm (O (n2)) (n,n2,υ(n)).

5. Conclusion

Actual running time of an algorithm is an empirical analysis that anticipates the running time of an
algorithm based on various different inputs with variable input size. In this paper we present the practical
measurement of this actual running time using multivariate regression curve to evaluate the efficiency of
the algorithm and quantified it considering the asymptotic worst case time complexity. We applied this
approach to compare the practical running time of similar type of algorithms, such as Quick Sort and
Merge Sort, where we obtained a relation between the practical running time υ (n) vs. the input size (n) of
these two algorithms. Using the productivity factor of the leading coefficients of these two equations we
have proved that QuickSort is a better sorting algorithm compared to MergeSort. We can also use this
concept in various mathematical-computational models to quantify running time on the basis of repeated
application with randomized inputs.

6. Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my advisors, Prof. Koyel Ganguly
Ma’am, Faculty at Institute of Engineering & Management (IEM), Kolkata and Prof. Biswadip Basu
Mallik Sir, Faculty at Institute of Engineering & Management (IEM), Kolkata for their constant support,
guidance, patience, motivation, and encouragement throughout this research paper work.

I also thank to all my fellow mates who assisted me in all the time of research and writing of this paper.

ISSN: 2689-484X (Print) ISSN: 2687-7902 (Online) IJIIP, Vol. 3, Issue 3, 2022

9 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN PHYSICS

Last but not the least, the completion of this paper would not have been possible without the involvement
and cooperation of a large number of individuals, whose names may not all be listed here, but I want to
convey my appreciation to each and every one of them who motivated me to work on it.

REFERENCES

[1] Dasgupta, S., Vazirani, U. V., & Papadimitriou, C. H. (2008). Algorithms. Mc Graw Hill Higher Education.

[2] Design and Analysis of Algorithms. (n.d.). Home [YouTube channel]. YouTube. Retrieved July 28, 2021, from
https://www.youtube.com/channel/UCliJsnOQEU9ZkWEE7Vtryng

[3] Khan F. 2019. Practical Running Time Predictor. https://github.com/khanfarhan10/Practical-Running-Time-
Predictor.git. (2021).

[4] Qin, Song, "Quick Sort Algorithm" Dept. of Computer Sciences , Florida Institute of Technology, Melbourne,
2008. Accessed at pdfs.semanticscholar.org/2684/3dbfe27055a99c1692f14d28e7771e0bde7b.pdf

[5] Qin, Song, "Merge Sort Algorithm" Dept. of Computer Sciences , Florida Institute of Technology , Melbourne,
2008. Accessed at cs.fit.edu/~pkc/classes/writing/hw13/song.pdf.

[6] Uyanıka, G. K. , and Gülerb, Neşe , "A Study on Multiple Linear Regression Analysis" Procedia - Social and
Behavioral Sciences, Vol. 106, pp 234-240, 2013. Accessed on doi.org/10.1016/j.sbspro.2013.12.027

[7] Stewart, B. D., "Measuring Execution Time and Real-Time Performance", Embedded Systems
ConferenceBoston, 2006. Accessed at pdfs.semanticscholar.org/e255/041e179f96a46f772c7959e381710a6a5a94.pdf

[8] Ng, A. (n.d.).Machine Learning. Coursera. https://www.coursera.org/learn/machine-learning

[9] “Quicksort.” Wikipedia, Wikimedia Foundation, 2 Aug. 2021, en.wikipedia.org/wiki/Quicksort.

[10] “Merge Sort.”Wikipedia, Wikimedia Foundation, 7 Aug. 2021, en.wikipedia.org/wiki/Merge sort.

https://www.youtube.com/channel/UCliJsnOQEU9ZkWEE7Vtryng
https://github.com/khanfarhan10/Practical-Running-Time-Predictor.git
https://github.com/khanfarhan10/Practical-Running-Time-Predictor.git
https://pdfs.semanticscholar.org/2684/3dbfe27055a99c1692f14d28e7771e0bde7b.pdf
http://cs.fit.edu/~pkc/classes/writing/hw13/song.pdf
https://doi.org/10.1016/j.sbspro.2013.12.027
https://pdfs.semanticscholar.org/e255/041e179f96a46f772c7959e381710a6a5a94.pdf

	1.Practical Running Time: A Brief Introduction
	2.Productivity Factor: A Measurable Entity
	3.Implementation: Application of the Practical Runni
	4.Data Visualization: Plotting the Running Time υ (n
	5.Conclusion
	6.Acknowledgements
	REFERENCES

